Cultural Intelligence: Its Measurement and Effects on Cultural Judgment and Decision Making, Cultural Adaptation, and Task Performance

Soon Ang
Nanyang Business School S3-1C-95
Nanyang Technological University
Nanyang Avenue 639798
Singapore
65 6790-4717 (voice)
65 6792-2313 (fax)
asang@ntu.edu.sg

Linn Van Dyne
Broad Graduate School of Management
Michigan State University
517 432 3512 (voice)
517 432 1111 (fax)
vandyne@msu.edu

Christine Koh
K. Yee Ng
Klaus J. Templer
Cheryl Tay
Nanyang Business School S3-1C-95
Nanyang Technological University
Nanyang Avenue 639798
Singapore

N. Anand Chandrasekar
Center for Creative Leadership
Singapore

2007
Management and Organization Review, 3, 335–371
Cultural Intelligence:
Its Measurement and Effects on Cultural Judgment and Decision Making,
Cultural Adaptation, and Task Performance

ABSTRACT

We enhance theoretical precision of cultural intelligence (CQ: capability to function effectively in culturally diverse settings) by developing and testing a model that posits differential relationships between the four CQ dimensions (metacognitive, cognitive, motivational, and behavioral) and three intercultural effectiveness outcomes (cultural judgment and decision making, cultural adaptation, and task performance in culturally diverse settings). Before testing the model, we describe development and cross-validation (N=1,360) of the multidimensional cultural intelligence scale (CQS) across samples, time, and country. We then describe three substantive studies (N=794) in field and educational development settings across two national contexts, U.S. and Singapore. Results demonstrate a consistent pattern of relationships where metacognitive CQ and cognitive CQ predicted cultural judgment and decision making; motivational CQ and behavioral CQ predicted cultural adaptation; and metacognitive CQ and behavioral CQ predicted task performance. We discuss theoretical and practical implications of our model and findings.

Keywords: individual difference, cultural intelligence, cultural adaptation, cultural judgment and decision making, task performance.
INTRODUCTION

Although globalization has made the world seem smaller and “flat” in many ways (Friedman, 2005), increasing cultural diversity creates challenges for individuals and organizations, making the world “not so flat” after all. For instance, a sizeable body of research demonstrates the challenges of cultural diversity for multicultural domestic work teams (Tsui and Gutek, 1999); multinational work teams (Earley and Gibson, 2002); global leaders (Van Dyne and Ang, 2006); and those in overseas work assignments (Bhaskar-Shrinivas, Harrison, Shaffer, and Luk, 2005). Relatively little research, however, focuses on factors that could improve intercultural encounters (Gelfand, Erez, and Aycan, 2007). In particular, research on individual capabilities for intercultural effectiveness is sparse and unsystematic, leaving an important gap in our understanding of why some individuals are more effective than others in culturally diverse situations.

Responding to this need, Earley and Ang (2003) developed the construct of cultural intelligence (CQ) based on contemporary theories of intelligence (Sternberg, 1986). Defined as an individual’s capability to function and manage effectively in culturally diverse settings, CQ is a multidimensional construct targeted at situations involving cross-cultural interactions arising from differences in race, ethnicity, and nationality.

To date, research on CQ has focused primarily on conceptual theorizing (Sternberg and Grigorenko, 2006). Ng and Earley (2006) discussed conceptual distinctions between CQ, a culture-free etic construct, and the traditional view of intelligence that is culture-bound and emic; Triandis (2006) discussed theoretical relationships between CQ capabilities and forming accurate judgments; Brislin, Worthley, and MacNab (2006) discussed CQ as critical for expecting and addressing the unexpected during intercultural encounters; Earley and Peterson (2004) developed
a systematic approach to intercultural training that links trainee CQ strengths and weaknesses to training interventions. Janssens and Brett (2006) advanced a fusion model of team collaboration for making culturally intelligent, creatively realistic team decisions.

In comparison, empirical research on CQ has been scarce – primarily due to newness of the construct. Ang, Van Dyne, and Koh (2006) demonstrated that the four dimensions of CQ were distinct from, and yet related to, more distal Big Five personality traits in conceptually meaningfully ways. In another study, Templer, Tay, and Chandrasekar (2006) examined motivational CQ and demonstrated that it predicted adjustment of global professionals, beyond realistic job and living conditions previews. These two studies are noteworthy because they provide initial evidence of the discriminant validity and practical significance of CQ.

Although promising, this early empirical research is limited in scope. Accordingly, the objective of this article is to integrate the literatures on intelligence and intercultural competencies, describe the development of a 20-item CQS (Cultural Intelligence Scale), and report the results of three studies that tested substantive predictions of CQ dimensions. Given the newness of CQ, we start by reviewing the theoretical conceptualization of the four CQ dimensions. We then develop a model that relates specific dimensions of CQ to cognitive, affective, and behavioral aspects of intercultural effectiveness, based on the framework introduced by Shaffer, Harrison, Gregersen, Black, and Ferzandi (2006). Empirically, we examine psychometric properties of the CQS, including cross-validation, generalizability across time, and generalizability across countries. We then report the results of three substantive studies designed to test our hypotheses using multiple settings, tasks, and measures to triangulate results. Overall, we aim to advance CQ research and offer practical implications for effectiveness in culturally diverse situations.
THEORETICAL BACKGROUND AND HYPOTHESES

Nature and Conceptualization of CQ

Earley and Ang (2003) anchored their discussion of the theoretical bases of CQ in contemporary theories of intelligence. We summarize their key arguments here.

Definition. Cultural intelligence (CQ), defined as an individual’s capability to function and manage effectively in culturally diverse settings, is consistent with Schmidt and Hunter’s (2000, p. 3) definition of general intelligence as “the ability to grasp and reason correctly with abstractions (concepts) and solve problems.” Although early research tended to view intelligence narrowly as the ability to solve problems in academic settings, there is now increasing consensus that intelligence may be displayed in places other than the classroom (Sternberg and Detterman, 1986). This growing interest in “real world” intelligence includes intelligence that focuses on specific content domains such as social intelligence (Thorndike and Stein, 1937), emotional intelligence (Mayer, Caruso, and Salovey, 2000), and practical intelligence (Sternberg et al., 1997). CQ acknowledges the practical realities of globalization (Earley and Ang, 2003) and focuses on a specific domain – intercultural settings. Thus, following Schmidt and Hunter’s (2000) definition of general intelligence, CQ is a specific form of intelligence focused on capabilities to grasp, reason, and behave in situations characterized by cultural diversity.

CQ as a multidimensional construct. Sternberg’s (1986) integrative framework proposed different “loci” of intelligence within the person. Metacognition, cognition, and motivation are mental capabilities that reside within the head, while overt actions are behavioral capabilities. Metacognitive intelligence refers to control of cognition: the processes individuals use to acquire and understand knowledge. Cognitive intelligence refers to knowledge structures and is
consistent with Ackerman’s (1996) intelligence-as-knowledge concept, which argues for the
importance of knowledge as part of intellect. Motivational intelligence refers to the mental
capacity to direct and sustain energy on a particular task or situation and recognize that
motivational capabilities are critical to “real-world” problem-solving (Ceci, 1996). Behavioral
intelligence refers to outward manifestations or overt actions: what people do rather than what
they think (Sternberg, 1986, p. 6).

Applying Sternberg’s multiple-loci of intelligence, Earley and Ang (2003) conceptualized
CQ as comprising metacognitive, cognitive, motivational, and behavioral dimensions with
specific relevance to functioning in culturally diverse settings. Metacognitive CQ reflects mental
processes that individuals use to acquire and understand cultural knowledge, including
knowledge of and control over individual thought processes (Flavell, 1979) relating to culture.
Relevant capabilities include planning, monitoring, and revising mental models of cultural norms
for countries or groups of people. Those with high metacognitive CQ are consciously aware of
others’ cultural preferences before and during interactions. They also question cultural
assumptions and adjust their mental models during and after interactions (Brislin et al., 2006;
Triandis, 2006).

While metacognitive CQ focuses on higher-order cognitive processes, cognitive CQ
reflects knowledge of norms, practices, and conventions in different cultures acquired from
education and personal experiences. This includes knowledge of economic, legal, and social
systems of different cultures and subcultures (Triandis, 1994) and knowledge of basic
frameworks of cultural values (e.g., Hofstede, 2001). Those with high cognitive CQ understand
similarities and differences across cultures (Brislin et al., 2006).

Motivational CQ reflects the capability to direct attention and energy toward learning
about and functioning in situations characterized by cultural differences. Kanfer and Heggestad (1997, p. 39) argued that such motivational capacities “provide agentic control of affect, cognition and behavior that facilitate goal accomplishment.” According to the expectancy-value theory of motivation (DeNisi and Pritchard, 2006; Eccles and Wigfield, 2002), the direction and magnitude of energy channelled toward a particular task involves two elements—expectations of success and value of success. Those with high motivational CQ direct attention and energy toward cross-cultural situations based on intrinsic interest (Deci and Ryan, 1985) and confidence in their cross-cultural effectiveness (Bandura, 2002).

Behavioral CQ reflects the capability to exhibit appropriate verbal and non-verbal actions when interacting with people from different cultures. As Hall (1959) emphasized, mental capabilities for cultural understanding and motivation must be complemented with the ability to exhibit appropriate verbal and non-verbal actions, based on cultural values of specific settings. This includes having a wide and flexible repertoire of behaviors. Those with high behavioral CQ exhibit situationally-appropriate behaviors based on their broad range of verbal and non-verbal capabilities, such as exhibiting culturally appropriate words, tone, gestures, and facial expressions (Gudykunst, Ting-Toomey, and Chua, 1988).

CQ as an aggregate multidimensional construct. The four dimensions of CQ are qualitatively different facets of the overall capability to function and manage effectively in culturally diverse settings (Earley and Ang, 2003). Like facets of job satisfaction, the dimensions of CQ may or may not correlate with each other. Thus, overall CQ represents an aggregate multidimensional construct, which according to Law, Wong, and Mobley (1998) includes (1) dimensions at the same level of conceptualization as the overall construct and (2) dimensions make up the overall construct. In sum, metacognitive CQ, cognitive CQ, motivational CQ, and behavioral CQ are
different capabilities that together form overall CQ.

Conceptual Distinctiveness of CQ

To further clarify the nature of CQ, we discuss differences and similarities between CQ and personality, other intelligences, as well as existing intercultural competency models.

Personality. As an individual difference capability, CQ refers to what a person can do to be effective in culturally diverse settings. Thus, it is distinct from stable personality traits which describe what a person typically does across time and across situations (Costa and McCrae, 1992). Since temperament influences choice of behaviors and experiences, some personality traits should relate to CQ. Consistent with this, Ang and colleagues (2006) showed discriminant validity of the four dimensions of CQ compared to the Big Five personality traits and demonstrated meaningful relationships between specific personality characteristics and specific aspects of CQ. Notably, and as expected, openness to experience - the tendency to be creative, imaginative, and adventurous (Costa and McCrae, 1992) related to all four dimensions of CQ.

Other intelligences. Since CQ is grounded in the theory of multiple intelligences (Sternberg and Detterman, 1986), CQ is similar to, yet distinct from, other forms of intelligence. We consider two forms of intelligence commonly investigated in management research to illustrate this point: general mental ability (GMA: Schmidt and Hunter, 2000) and emotional intelligence (EI: Law, Wong, and Song, 2004; Mayer, Caruso, and Salovey, 2000). CQ is similar to these other intelligences because it is a set of capabilities, rather than preferred ways of behaving (Mayer, Caruso and Salovey, 2000). These constructs differ, however, in the nature of the abilities. General mental ability focuses on cognitive abilities, is not specific to particular types of contexts (Schmidt and Hunter, 2000) such as culturally diverse situations, and does not include behavioral or motivational aspects of intelligence. Emotional intelligence focuses on the ability
to deal with personal emotions. Like CQ, it goes beyond academic and mental intelligence. It differs, however, from CQ because it focuses on the general ability to perceive and manage emotions without consideration of cultural context. Given that emotional cues are symbolically constructed and historically transmitted within culture (Fitch, 1998), the ability to encode and decode emotions in the home culture does not automatically transfer to unfamiliar cultures (Earley and Ang, 2003). Thus, a person with high EI in one cultural context may not be emotionally intelligent in another culture. In contrast, CQ is culture-free and refers to a general set of capabilities with relevance to situations characterized by cultural diversity.

Existing intercultural competency constructs. Although there is a large body of literature on intercultural competencies (see Paige, 2004 for a comprehensive review), this research generally suffers from ambiguous construct definitions and poor integration, resulting in a fragmented list of competencies that lack theoretical coherence (Yamazaki and Kayes, 2004). Since CQ is grounded explicitly in the theoretical framework of multiple intelligences (Earley and Ang, 2003; Sternberg and Detterman, 1986), the four dimensions of CQ should provide a systematic rationale for organizing and integrating existing research on intercultural competencies.

Examining the intercultural competency scales in Paige’s (2004) review highlights several gaps that CQ addresses. First, most intercultural competencies scales mix ability and personality (e.g., CCAI: Cross-Cultural Adaptability Inventory; CCWM: Cross-Cultural World Mindedness; CSI: Cultural Shock Inventory; ICAPS: Intercultural Adjustment Potential Scale; IDI: Intercultural Development Inventory; MAKSS: Multicultural Awareness-Knowledge-Skills Survey; OAI: Overseas Assignment Inventory, and Prospector). Although personality characteristics are important to cross-cultural adjustment, including stable dispositional traits in competency models muddies the validity and precision of these models. Second, although many
scales include items that are similar to CQ, no scale is based explicitly on contemporary theories of intelligence and no scale systematically assesses the four aspects of intelligence. Third, CQ is not specific to a particular culture. Thus, CQ differs from cultural competency models that focus on country-specific knowledge or ability such as the Culture-Specific Assimilator.

In sum, we argue that CQ is conceptually distinct from personality traits, other intelligences, and other intercultural competencies. Grounding CQ as a form of intelligence allows precision about the nature of CQ as a set of relatively malleable capabilities that can be enhanced over time (Earley and Peterson, 2004).

Hypotheses for CQ and Intercultural Effectiveness Outcomes

The expatriate and cross-cultural literatures tend to emphasize adjustment outcomes (Black and Stephens, 1989). More recently, however, researchers have called for, and examined, more comprehensive conceptualizations of effectiveness in culturally diverse settings (Caligiuri, 1997). For example, Shaffer and colleagues (2006) examined cognitive, affective, and behavioral aspects of intercultural effectiveness. Using their framework, we consider relationships between CQ and cultural judgment and decision-making (a cognitive outcome), cultural adjustment and well-being (an affective outcome), and task performance (a behavioral outcome).

Cultural judgment and decision making (CJDM). Judgment and decision making (JDM) refers broadly to human information processes for making decisions. JDM tasks require deliberate reasoning, evaluation of evidence, and comparison of alternatives (Einhorn and Hogarth, 1981). In our research, we examine the quality of decisions regarding intercultural interactions (CJDM). Effective CJDM requires understanding cultural issues and making appropriate interpretations based on cultural values (Mendenhall and Oddou, 1985).
Given that CJDM emphasizes analytical abilities, we propose that cognitive CQ and metacognitive CQ should be most relevant in predicting CJDM effectiveness. Cognitive CQ should relate positively to CJDM effectiveness because those with higher cognitive CQ have elaborate cultural schemas, defined as mental representations of social interactions of particular cultural groups (Triandis, 1994). Since schemas facilitate conceptually-driven information processing, having rich cultural schemas should allow individuals to identify and understand key issues in CJDM and develop appropriate explanations.

Metacognitive CQ is the higher-order mental capability to think about personal thought processes, anticipate cultural preferences of others, and adjust mental models during and after intercultural experiences. As such, metacognitive CQ should positively relate to CJDM effectiveness. When people are aware of potential differences in thought processes, they tend to make isomorphic attributions, defined as interpreting behavior from the actor’s perspective and giving it the same meaning as that intended by the actor (Triandis, 2006). Acknowledging, but moving beyond cultural stereotypes to incorporate unique individual characteristics (such as diversity within culture and variability in behavior across time and situations) allows those with high metacognitive CQ to understand others and make higher quality cultural decisions.

We do not predict relationships for motivational CQ and behavioral CQ with CJDM effectiveness because the analytical processes involved in reasoning about cultural issues do not emphasize the capability to channel energy or display appropriate behaviors. Accordingly,

\[H1: \text{Metacognitive CQ (H1a) and cognitive CQ (H1b) will relate positively to cultural judgment and decision making (CJDM) effectiveness.} \]

Cultural adaptation. When individuals relocate to unfamiliar cultures, they often experience stress because norms and behaviors are unfamiliar and confusing. Research on intercultural
encounters demonstrates the importance of cultural adaptation (e.g., Bhaskar-Shrinivas et al., 2005). Cultural adaptation includes the sociocultural sense of adjustment and psychological feelings of well-being (Searle and Ward, 1990). Following Shaffer and colleagues (2006), we consider cultural adaptation an affective outcome because it represents subjective assessments with affective implications.

Since intercultural interactions can be stressful (Mendenhall and Oddou, 1985), motivational CQ and behavioral CQ have special relevance to cultural adaptation. This is consistent with meta-analytic findings that self-efficacy and relationship skills predict expatriate adjustment (Bhaskar-Shrinivas et al., 2005). Motivational CQ should positively relate to cultural adaptation because those with higher motivational CQ have intrinsic interest in other cultures and expect to be successful in culturally diverse situations. According to social cognitive theory (Bandura, 2002), they initiate effort, persist in their efforts, and perform better. For example, Epel, Bandura, and Zimbardo (1999) demonstrated that higher efficacy beliefs led to engagement and persistence in difficult situations, as well as better adjustment.

Behavioral CQ is the capability to exhibit appropriate verbal and nonverbal actions in culturally diverse situations. Since cultural adaptation is a person’s sense of fitting in and well-being in a particular situation, those with the capability to vary their behavior (behavioral CQ) should have higher cultural adaptation. According to Goffman’s (1959) theory of self-presentation, individuals use impression management techniques so that others view them positively. Since cultures differ in their norms for appropriate behaviors (Hall, 1959; Triandis, 1994), the ability to display a flexible range of behaviors is critical to creating positive impressions and developing intercultural relationships (Gudykunst, Ting-Toomey, and Chua, 1988). When individuals are flexible, they are less offensive to others, more likely to fit in, and
better adapted.

We do not predict relationships for metacognitive CQ and cognitive CQ with cultural adaptation because cognitive capabilities do not necessarily translate into actions and behaviors. For example, Hall’s (1993) research on foreign service workers concluded that cognitive training did not significantly enhance cultural adjustment. Thus,

\[H2: \text{Motivational CQ (H2a) and behavioral CQ (H2b) will relate positively to cultural adaptation.} \]

Task performance. Task performance is a function of knowledge, skills, abilities, and motivation directed at role-prescribed behavior, such as formal job responsibilities (Campbell, 1999). Performance evaluation is the degree individuals meet role expectations (Katz and Kahn, 1978). Cultural values, however, influence role expectations and perceptions of role expectations. For instance, Stone-Romero, Stone and Salas (2003) argued that individuals often receive poor performance evaluations when they have a different cultural background, do not understand cultural differences in role expectations, and do not conform to role expectations.

Since expectations for performing role prescribed behaviors often differ across cultures, we propose that all four dimensions of CQ will enhance cognitive understanding, motivation, and behavioral enactment of role expectations. We start with cognitive CQ. When individuals have elaborate cultural schemas, they should have more accurate understanding of role expectations. For example, those with rich mental representations of culturally-based social interactions are more aware of potential differences in role expectations and more likely to demonstrate appropriate role behaviors.

Next, we consider metacognitive CQ and task performance. Those with high metacognitive CQ know when and how to apply their cultural knowledge. They do not rely on
habitual knowledge structures, but select from multiple knowledge structures depending on the context. They also know when to suspend judgment based on stereotypes and when to look for additional cues (Triandis, 2006). Accordingly, they have more accurate understanding of expected role behaviors in situations characterized by cultural diversity.

Those with high motivational CQ should have higher task performance because they direct energy toward learning role expectations, even when role sender cues are confusing due to cultural differences (Stone-Romero et al., 2003). For example, persistence provides more opportunities to obtain feedback. Those with energy and persistence tend to practice new behaviors and through practice, improve their performance.

Finally, behavioral CQ should positively relate to task performance. Those with high behavioral CQ flex their verbal and nonverbal behaviors to meet expectations of others. When self-presentation (Goffman, 1959) parallels role expectations, misunderstandings should be lower and task performance should be higher. Consistent with this, Shaffer and colleagues (2006) demonstrated positive effects of behavioral flexibility on cross-cultural performance. Combining the above arguments, we propose that each of the four dimensions of CQ should positively relate to task performance.

\textit{H3: Metacognitive CQ (H3a), cognitive CQ (H3b), motivational CQ (H3c), and behavioral CQ (H3d) will relate positively to task performance.}

\textbf{METHOD}

\textbf{Development of the Cultural Intelligence Scale (CQS)}

To develop the Cultural Intelligence Scale (CQS), we reviewed the intelligence and intercultural competencies literatures and supplemented this with interviews from eight executives with extensive global work experience. We used educational and cognitive
psychology operationalizations of meta-cognition (e.g., O’Neil and Abedi, 1996) for awareness, planning, regulating, monitoring, and controlling cognitive processes of thinking and learning. We used knowledge of cultural domains identified by Triandis (1994) and supplemented with Murdock’s (1987) Human Relations Areas Files, including economic, legal, and social systems in other cultures. We drew on Deci and Ryan (1985) for intrinsic satisfaction and Bandura (2002) for self-efficacy in intercultural settings. Finally, we used intercultural communication for verbal and non-verbal flexibility (Gudykunst et al., 1988; Hall, 1959).

Item Pool Generation. Hinkin (1998) suggested starting with twice as many items as targeted for the final scale to allow psychometric refinement. We aimed for a parsimonious scale with four to six items for each CQ dimension to minimize response bias caused by boredom and fatigue (Schmitt and Stults, 1985) while providing adequate internal consistency reliability. The second author wrote 53 items for the initial item pool (about 13 per CQ dimension). Each item contained one idea, was relatively short in length, and used simple, direct language. Since negatively worded items can create artifacts, we used positively worded items. Next, a panel of three faculty and three international executives (each with significant cross-cultural expertise) independently assessed the randomly ordered 53 items for clarity, readability, and definitional fidelity (1=very low quality; 5=very high quality). We retained the 10 best items for each dimension (40 items).

Initial Factor Structure Validity. We examined the factor structure of the initial 40 items with a sample of undergraduates in Singapore (N=576; 74% female; mean age 20). Given that we designed the measure to reflect the four theoretical dimensions of CQ, we expected to confirm a 4-factor structure and assessed dimensionality with CFA (LISREL 8: maximum likelihood estimation and correlated factors). We started with the initial 40 items and conducted a
comprehensive series of specification searches. We deleted items with high residuals, low factor loadings, small standard deviations or extreme means, and low item-to-total correlations. We retained 20 items with the strongest psychometric properties as the Cultural Intelligence Scale (CQS): four meta-cognitive CQ, six cognitive CQ, five motivational CQ, and five behavioral CQ (see Appendix for the Cultural Intelligence Scale). CFA demonstrated good fit of the hypothesized 4-factor model to the data: $\chi^2 (164df) = 822.26$, NNFI = .91, CFI = .92, SRMR = .06, and RMSEA = .08 ($p<.05$). Standardized factor loadings for items in the four scales (.52-.80) were significantly different from zero (t-values: 9.30-17.51, $p<.05$). The four factors had moderate inter-correlations (.21-.45) and acceptable variances (.75-1.03). The corrected item-to-total correlations for each subscale (.47-.71) demonstrated strong relationships between items and their scales, supporting internal consistency. Composite reliabilities exceeded .70 (meta-cognitive CQ = .72, cognitive CQ = .86, motivational CQ = .76, and behavioral CQ = .83: Fornell and Larcker, 1981).

Following Kirkman and Law’s (2005) recommendations to conduct research in different cultures, we collected additional data from Singapore and the United States to assess generalizability of the CQS across samples, time, and countries with three cross-validation samples. We then tested our hypotheses in three substantive studies.

Cross-Validation of the Cultural Intelligence Scale (CQS) Across Samples. CFA on the first cross-validation sample (N=447 undergraduates in Singapore, 70% female, mean age 20) demonstrated good fit for the hypothesized 4-factor model: $\chi^2 (164df)=381.28$, NNFI=.96, CFI=.96, SRMR=.04, and RMSEA=.05 ($p<.05$). Standardized loadings (.50-.79) were significantly different from zero (t-values: 8.32-12.90, $p<.05$), with moderate correlations between factors (.23-.37) and acceptable variances (.87-1.05). Corrected item-to-total
correlations for each subscale (.46-.66) demonstrated strong relationships between items and their scales, supporting internal consistency. Reliabilities exceeded .70 (metacognitive CQ=.77, cognitive CQ=.84, motivational CQ=.77, and behavioral CQ=.84).

Generalizability of the Cultural Intelligence Scale (CQS) Across Time. A subset of respondents (N=204, 76% female, mean age 20) from Singapore cross-validation sample completed the CQS again four months later. We examined T1-T2 longitudinal measurement invariance using CFA and an augmented covariance matrix as input (rather than a multi-sample approach) to account for time-wise correlated errors (Vandenberg and Lance, 2000). We used a 20-item by 2-measurement occasion matrix and specified eight latent variables (four T1 CQ factors and four T2 CQ factors), with unique variances of identical items correlated across time.

Following procedure suggested by Vandenberg and Lance (2000), we began with a correlated 4-factor model with no constraints (parameters at T1 and T2 freely estimated). Results demonstrated acceptable fit (Model A: $\chi^2 (692 df) = 981.18$, NNFI=.94, CFI=.95, SRMR=.06, RMSEA=.04), suggesting that the 4-factor model held across the two time periods. We then tested two alternative models. The chi-square difference between Model A and B (factor loadings constrained to be invariant) failed to reach significance ($\Delta \chi^2 (16 df) = 22.79$, $p=ns$), providing strong support for invariance in factor loadings across T1 and T2. The chi-square difference between Model B and C (item intercepts constrained to be invariant) also failed to reach significance ($\Delta \chi^2 (14 df) = 17.59$, $p=ns$), providing support for item intercept invariance.

Generalizability of the Cultural Intelligence Scale (CQS) Across Countries. We assessed equivalence of the CQS in a U.S. sample (N=337 undergraduates, 55% female, mean age 22) compared to the Singapore cross-validation sample (N=447) using sequential tests of model invariance (Byrne, 1998). Model A (4-factors with loadings freely estimated across samples)
demonstrated good fit: $\chi^2 (328df) = 723.23$, NNFI=.96, CFI=.97, SRMR=.05, RMSEA=.05, indicating equivalence in number of factors. We tested two alternative models. The chi-square difference between Model A and B (4-factors with loadings forced to be invariant) failed to reach significance ($\Delta \chi^2 (16df) = 13.74, p=ns$), providing strong support for invariance in factor loadings across settings. The chi-square difference between the Model B and C (4-factors with factor covariances forced to be invariant) failed to reach significance ($\Delta \chi^2 (10df) = 17.96, p=ns$), supporting invariance in factor covariances. In sum, multiple group tests of invariance demonstrated the same four factor structure holds across the two countries.

STUDY 1

We assessed H1 (metacognitive CQ and cognitive CQ as predictors of CJDM effectiveness) and H2 (motivational CQ and behavioral CQ as predictors of cultural adaptation) in Study 1, controlling for relevant individual differences.

Samples and Procedures

Two samples of undergraduates, (N=235: Midwestern U.S., 45% female, average age 22; N=358: Singapore, 76% female, average age 19) participated in the study as partial fulfillment of course requirements. CQ has direct relevance to students because over 77% of incoming freshmen in the U.S. have prior international experience (e.g., traveling or hosting international students) and students increasingly cross cultures for study, internships, and personal travel (Cushner and Karim, 2004). The percentage of foreigners in each University was 25% in Singapore and 22% in the U.S.

In the U.S. sample, participants completed on-line questionnaires on CQ, EI, and Big Five personality in a computer lab, followed by a test of general mental ability and an on-line negotiation exercise that was part of an unrelated study. Finally, they completed CJDM
scenarios, rated their cultural adaptation, and provided information on demographics and cross-
cultural experience.

Expanding on this design, we collected data in Singapore at three points in time across
one semester. In the first two weeks, students completed questionnaires on CQ, EI, cross-
cultural adaptability, cross-cultural experience, and general mental ability. Students made CJDM
decisions in week five and rated their cultural adaptation in week twelve.

Measures

Cultural judgment and decision making (CJDM). In the U.S. sample, we assessed *CJDM* with
five cross-cultural decision-making scenarios (Cushner and Brislin, 1996). We selected
scenarios with theoretically meaningful differences in cultural values - collectivism, power
distance, masculinity, specific-diffuse, and low-high context communication - involving people
from different parts of the world (U.S., France, Korea, Japan, Philippines, China, and Middle
East). Participants read scenarios describing cultural interactions and selected the best response
to explain each. We summed correct responses (range 0–5) for CJDM. In the Singapore sample,
students analyzed a cross-cultural case (Trompenaars and Hampden-Turner, 1997) and described
their strategies for resolving the dilemma. Instructors rated effectiveness of strategies (range 0–
10) for CJDM.

Cultural adaptation. We assessed interactional adjustment with three items (U.S./ Singapore:
α=.94/.95): How well have you adjusted to your current situation in terms of socializing with
people; interacting with people on a day-to-day basis; getting along with people (1=extremely
unadjusted; 7=extremely adjusted) from Black and Stephens (1989). We assessed well-being
with four items (α=.78/.84): Rate the extent of your general well-being for each of the following:
been able to concentrate on whatever you have been doing; felt that you are playing a useful
part/making useful contributions; felt capable of making decisions; been able to face up to your responsibilities (1=not at all; 7=a very great extent) from Goldberg and Williams (1988).

Cultural intelligence. Participants (U.S./Singapore) completed the 20-item CQS (see Appendix): metacognitive CQ ($\alpha=.76/.70$); cognitive CQ ($\alpha=.80/.88$), motivational CQ ($\alpha=.79/.75$); and behavioral CQ ($\alpha=.82/.87$).

Cognitive ability. We assessed general mental ability (GMA) in both samples with the WPT (Wonderlic, 1999).

Emotional intelligence. We assessed EI in the U.S. sample with Schutte and colleagues’ (1998) 33-item, 4-dimension scale: optimism/mood regulation (12 items, $\alpha=.83$), appraisal of emotions (6 items, $\alpha=.78$), utilization of emotions (6 items, $\alpha=.68$), and social skills (9 items, $\alpha=.76$). Given the relatively high correlations among the four dimensions (.42-.70), we reduced the length of the questionnaire for the Singapore sample by selecting two items with the highest loadings for each factor to form a unidimensional, 8-item EI scale ($\alpha=.86$). This is consistent with the original dimensionality of the scale. In the U.S. sample, the full scale correlated with the shortened scale .77.

Big 5 personality. In the U.S. sample, we assessed Big 5 personality (FFM: Costa and McCrae, 1992): conscientiousness (12 items, $\alpha=.80$), openness (12 items, $\alpha=.66$), extraversion (12 items, $\alpha=.75$), agreeableness (12 items, $\alpha=.74$), and emotional stability (12 items, $\alpha=.80$).

Cross cultural adaptability inventory. In the Singapore sample, we included the four factor Cross-Cultural Adaptability Inventory (CCAI: Kelley and Meyers, 1995), the most widely used scale for assessing cross-cultural competency (Paige, 2004): personal autonomy (7 items, $\alpha=.59$), emotional resilience (18 items, $\alpha=.82$), flexibility/openness (15 items, $\alpha=.66$), and perceptual acuity (10 items, $\alpha=.74$).
Controls. We included sex (0=F, 1=M), cross-cultural experience (1=not experienced at all, 2=moderately experienced, 3=very experienced), and age (years) as controls.

Dimensionality, Internal Consistency, and Validity Evidence

We conducted confirmatory factor analysis at the item level, except for FFM, EI, and CCAI scales where we used item-parcels to reduce model complexity and establish more stable parameter estimates (Bagozzi and Edwards 1998). For the FFM, we randomly divided the twelve items per factor into three parcels of four items each. For EI, we randomly created three item parcels per factor. For CCAI, we used three item parcels.

CFA demonstrated acceptable fit. In the U.S. sample, CFA for the 17 constructs (4 CQ factors, FFM, general mental ability, 4 EI, CJDM, interactional adjustment, and well-being) demonstrated acceptable fit: $\chi^2 (1350 df) = 2349.73$, NNFI=.93, CFI=.94, SRMR=.06, and RMSEA=.05 ($p<.05$). Reliabilities for the CQ factors were .77-.82 with standardized factor loadings (.57-.76) significantly different from zero (t-values: 7.07-9.18, $p<.05$). In the Singapore sample, CFA for the 13 constructs (4 CQ factors, 4 CCAI, general mental ability, EI, CJDM, interactional adjustment, and well-being) also demonstrated acceptable fit: $\chi^2 (869 df) = 1686.18$, NNFI=.95, CFI=.96, SRMR=.05, and RMSEA=.05 ($p<.05$), with CQ factor reliabilities .71-.88 and standardized factor loadings (.53-.85) significantly different from zero (7.46-17.77, $p<.05$).

We assessed convergent validity by examining correlations between the CQ factors and related constructs. As expected, the four CQ factors moderately and positively related to EI (U.S.: $r=.18-.41$, mean=.27; Singapore: $r=.12-.28$, mean=.18). Eleven of the sixteen correlations between the four factors of CQ and the four factors of the CCAI were significant ($r=.07-.48$, mean=.22). In sum, analyses support convergent validity.

We assessed discriminant validity following the procedures suggested by Fornell and
Larcker (1981). To demonstrate discriminant validity, the variance shared between a construct and any other construct in the model (the squared correlation between the two constructs) should be less than the variance that construct shares with its measures (AVE: average variance extracted). Results demonstrated discriminant validity between the four CQ factors in both samples (U.S./Singapore): each AVE (.41-.48 / .38-.58) exceeded the square of the correlations (.17-.40 / .07-.30). Results also support discriminant validity between CQ and other constructs: U.S.: AVEs for each CQ factor (.41-.48) exceeded the square of the correlations between factors with the four EI factors, general mental ability, FFM, CJDM, interactional adjustment, and well-being (.00-.31); Singapore: AVEs for each CQ factor (.38-.58) exceeded the square of the correlations with the four CCAI factors, general mental ability, EI, CJDM, interactional adjustment, and well-being (.00-.37). This provides evidence of discriminant validity of the four CQ factors as well as discriminant validity of CQ compared to other constructs (general mental ability, EI, FFM, CJDM, CCAI, interactional adjustment, and well-being).

Study 1 Results

Table 1 reports descriptive statistics, correlations, and reliabilities for the U.S. sample (N=235) and Table 2 reports this information for the Singapore sample (N=358).

Table 3 (controlling for age, sex, cross-cultural experience, general mental ability, EI, and FFM) and Table 4 (controlling for age, sex, cross-cultural experience, general mental ability, EI, and CCAI) report regression results in the U.S. and Singapore samples. Results in step 3 (U.S./Singapore), show that adding CQ increased explained variance in CJDM by 5%/3% ($\Delta F =2.85/2.56, p<.05$), with overall adjusted $R^2=.14/.05$. Individual beta values support H1a. Metacognitive CQ predicted CJDM ($\beta=.21, p<.01 / \beta=.15, p<.05$), over and above the controls.
Results also support H1b. Cognitive CQ predicted CJDM ($\beta=.16$, $p<.05$ / $\beta=.13$, $p<.05$), over and above the controls.

[INSERT TABLES 3 & 4 ABOUT HERE]

Regression results also support H2 for both forms of cultural adaptation. Adding CQ in step 3 increased explained variance in interactional adjustment by 4%/3% (adjusted $R^2=.32/.24$) and well-being by 4%/3% (adjusted $R^2=.48/.38$), demonstrating incremental validity of the four CQ factors. Motivational CQ (H2a: $\beta=.15$, $p<.05$ / $\beta=.13$, $p<.05$) and behavioral CQ (H2b: $\beta=.17$, $p<.05$ / $\beta=.10$, $p<.05$) predicted interactional adjustment, over and above other predictors. Motivational CQ (H2a: $\beta=.16$, $p<.01$ / $\beta=.12$, $p<.05$) and behavioral CQ (H2b: $\beta=.13$, $p<.05$ / $\beta=.09$, $p<.05$) predicted well-being.

In sum, results for both samples in Study 1 support H1 and H2. Usefulness analysis (Darlington, 1968) shows relative variance explained by CQ vis-à-vis other predictors (e.g., general mental ability, EI, FFM, and CCAI). Results show the unique variance explained by CQ (.04 - .05) compared to general mental ability (.01-.02), EI (.02-.05), and FFM (.04-.17) in the U.S. sample. The unique variance explained by CQ in the Singapore sample was .03, compared to general mental ability (.00-.01), EI (.00-.08), and CCAI (.04-.06).

STUDY 2

We designed Study 2 as part of an executive development program to triangulate findings from Study 1. Thus, we examined CQ and CJDM (H1) in a non-student sample of international managers and also examined CQ and performance in an extended case analysis (H3). We did not assess cultural adaptation (H2) in Study 2 because the short nature of the program raised questions about meaningfulness of adaptation. Study 2 also included social desirability and rhetorical sensitivity to rule out alternative explanations for predicted relationships.
Sample and Procedures

We collected data from 98 international managers participating in a 3-day executive development program at a public university in Singapore (31% local, 64% male, average age 28, all with bachelor’s degrees). Participants represented 17 nations (U.S., France, Switzerland, Germany, Netherlands, Bangladesh, India, Indonesia, Vietnam, Philippines, Malaysia, Singapore, China, Taiwan, Australia, Hong Kong and Japan) and held jobs with international scope. The program emphasized cross-cultural management, including lectures, case analyses, and developing and presenting business case proposals.

Measures

Cultural judgment and decision making (CJDM). Participants worked individually to complete *cultural judgment and decision making* of a case involving a cross-cultural challenge faced by a U.S. executive managing a Korean subsidiary. The instructor rated quality of judgments and decision performance on a scale of 0 to 100 (*CJDM*: mean=65.63, SD=7.47).

Task performance. Participants also worked in randomly-assigned dyads where they completed an extended problem solving simulation on developing a vacant piece of land in a culturally diverse part of Singapore. As a team of property developers, each dyad produced a written business proposal and gave a verbal presentation on the marketing and financial viability of their development plan. Peers rated *task performance* with three in-role behavior items ($\alpha=.91$): Overall, my partner effectively fulfilled his/her roles and responsibilities concerning the business proposal assignment; Overall, my partner’s performance met my expectations; For the business proposal assignment, my partner performed his/her tasks the way I would like them to be performed (1=strongly disagree; 7=strongly agree) adapted from Tsui (1984; 1990); and Williams and Anderson (1991).
Cultural intelligence. We assessed cultural intelligence with the CQS: metacognitive CQ ($\alpha=.71$), cognitive CQ ($\alpha=.85$), motivational CQ ($\alpha=.71$), and behavioral CQ ($\alpha=.83$).

Cognitive ability. We assessed general mental ability with the WPT (Wonderlic, 1999).

Controls. Task performance required significant verbal interaction and presentation of business proposals. Thus, we controlled for communication competence by assessing rhetorical sensitivity (5 items, $\alpha=.79$) to rule out possible contamination based on differences in communication skills (Hart, Carlson, and Eadie, 1980). We also controlled for social desirability (Marlowe-Crowne short form: Strahan and Gerbasi, 1972), sex (0=F, 1=M), cross-cultural experience (total countries worked in), and dyadic similarity (0=different country, 1=same).

Dimensionality, Internal Consistency, and Validity Evidence

CFA of the four CQ factors, general mental ability, CJDM, task performance, rhetorical sensitivity, and social desirability demonstrated marginally acceptable fit ($\chi^2 (401 df) =580.53$, NNFI=.86, CFI=.88, SRMR=.08, and RMSEA=.06 ($p<.05$). Reliabilities for the four CQ factors were .81-.88, and standardized factor loadings (.42-.96) were significantly different from zero (t-values: 4.02-14.41, $p<.05$).

Since rhetorical sensitivity involves awareness in adjusting communication to fit the listener (Hart et al., 1980), we expected rhetorical sensitivity would positively relate to metacognitive CQ and behavioral CQ. Results were significant: metacognitive CQ ($r=.22$, $p<.05$) and behavioral CQ ($r=.34$, $p<.01$), providing evidence of convergent validity.

Since social desirability can be a source of nuisance variance, a low correlation between the CQS factors and social desirability would provide additional evidence of discriminant validity. Analyses showed that all CQ items had higher mean item-total
correlations with their respective CQ factor than with social desirability and correlations between CQ factors and social desirability were not significant ($r = -.07$-.13), supporting discriminant validity.

Analysis of AVEs (Fornell and Larcker, 1981) provided further evidence of discriminant validity of the four CQ factors, as well as discriminant validity of the CQ factors compared to other constructs. AVEs for each CQ factor (.47-.62) exceeded the square of the correlations with other CQ factors (.00-.23), as well as with general mental ability, CJDM, task performance, rhetorical sensitivity, and social desirability (.00-.10).

Study 2 Results

Table 5 reports descriptive statistics, correlations, and reliabilities for Study 2. Table 6 summarizes regression results for CJDM (H1a-H1b) and task performance (H3a-H3d).

Results support H1, demonstrating that metacognitive CQ (H1a: $\beta = .30$, $p < .05$) and cognitive CQ (H1b: $\beta = .37$, $p < .05$) predicted CJDM. Results support H3a and H3d, demonstrating that metacognitive CQ ($\beta = .30$, $p < .05$) and behavioral CQ ($\beta = .47$, $p < .001$) predicted task performance. Cognitive CQ ($\beta = .19$, ns) and motivational CQ ($\beta = -.01$, ns) did not significantly relate to task performance, and therefore H3b and H3c were not supported.

CQ increased explained variance in CJDM by 22% (adjusted $R^2 = .21$) and in task performance by 24% (adjusted $R^2 = .28$), over and above sex, citizenship, cross-cultural experience, dyadic similarity, general mental ability, rhetorical sensitivity, and social desirability. Usefulness analysis shows variance explained by CQ (.22-.24) compared favorably to GMA (.02-.03), rhetorical sensitivity (.01-.05), and social desirability (.07-.09).

STUDY 3
We designed Study 3 to triangulate and extend findings from instructional settings (Studies 1-2) to field settings. If field results produce the same pattern of results as Studies 1 and 2, this will reinforce results and strengthen generalizability of findings.

Sample and Procedures

We collected data from 103 foreign professionals and their supervisors. Foreign professionals (83% male, average age 34 years, average job tenure 2.6 years), recruited from other countries (U.S., United Kingdom, Denmark, Germany, Belgium, Austria, Greece, Australia, Indonesia, Philippines, China, and India), worked for an information technology consulting firm in Singapore. Participants completed web questionnaires on cultural adjustment and well-being. Supervisors completed a web questionnaire on task performance and employee adjustment (interactional adjustment and work adjustment). Since general adjustment and well-being do not focus on work-related adjustment, we did not collect supervisor ratings for them.

Measures

Task performance. Supervisors rated task performance with two in-role behavior items: fulfills the work responsibilities of the job; meets performance expectations (1=strongly disagree; 7=strong agree) adapted from Williams and Anderson (1991: $\alpha=.95$).

Cultural adaptation. Supervisors rated employee interactional (3 items, $\alpha=.83$) and work adjustment (3 items, $\alpha=.77$). Employees rated interactional (3 items, $\alpha=.89$), work (3 items, $\alpha=.87$), and general adjustment (5 items, $\alpha=.76$) and well-being (4 items, $\alpha=.76$). We used the same items as in Study 1 for interactional adjustment and well-being. We adapted work adjustment items: How well have you adjusted to your current situation in terms of specific job responsibilities; supervisory responsibilities; performance standards and expectations and general adjustment items: How well have you adjusted to your current situation in terms of living
conditions in general; food; shopping; cost of living; healthcare facilities (1=extremely unadjusted; 7=extremely adjusted) from Black and Stephens (1989).

Cultural intelligence. We assessed cultural intelligence with the CQS: metacognitive CQ ($\alpha=.88$), cognitive CQ ($\alpha=.89$), motivational CQ ($\alpha=.81$), and behavioral CQ ($\alpha=.86$).

Controls. We included sex (0=F, 1=M) and cross-cultural experience (years of foreign assignment work) as controls.

Dimensionality, Internal Consistency, and Validity Evidence

CFA of the four CQ factors; self-report of interactional adjustment, work adjustment, general adjustment, and well-being; and supervisor-report of task performance, interactional adjustment, and work adjustment demonstrated good fit: $\chi^2 (805 df) = 877.24$, NNFI=.96, CFI=.97, SRMR=.07, and RMSEA=.03 ($p<.05$). Reliabilities for the four CQ factors were .81-.87, and standardized factor loadings (.45-.85) were significantly different from zero (t-values: 4.29-8.17, $p<.05$).

Analysis of AVEs shows discriminant validity. AVEs for each CQ factor (.46-.56) exceeded the square of the correlations with other CQ factors (.10-.32) and with self-report of interactional adjustment, work adjustment, general adjustment, and well-being (.00-.29).

Study 3 Results

Table 7 reports descriptive statistics, correlations, and reliabilities for the foreign professionals and their supervisors. Table 8 summarizes regression results.

[INSERT TABLES 7 & 8 ABOUT HERE]

Results support H2. Motivational CQ and behavioral CQ predicted supervisor-rated interactional adjustment ($\beta=.42$, $p<.01$ / $\beta=.28$, $p<.05$) and work adjustment ($\beta=.41$, $p<.01$ / $\beta=.35$, $p<.05$), thus, supporting H2a and H2b. Motivational CQ and behavioral CQ also
predicted self-reported cultural adaptation: motivational CQ (H2a) and interactional (β=.41,
$p<.001$), work (β=.39, $p<.001$), and general adjustment (β=.33, $p<.001$) as well as well-being
(β=.47, $p<.001$); behavioral CQ (H2b) and interactional adjustment (β=.27, $p<.01$), work
adjustment (β=.19, $p<.05$), general adjustment (β=.26, $p<.01$), and well-being (β=.19, $p<.05$).

Results support H3a and H3d. Metacognitive CQ (β=.47, $p<.01$) and behavioral CQ
(β=.31, $p<.05$) predicted supervisor-rated task performance. Results did not support H3b or H3c
for cognitive CQ (β=.00, ns) or motivational CQ (β=.26, ns) in predicting
task performance.

CQ increased explained variance in supervisor-rated task performance 36% (adjusted
$R^2=.29$), interactional adjustment 28% (adjusted $R^2=.18$), and work adjustment 29% (adjusted
$R^2=.19$). CQ also increased explained variance in self-rated interactional adjustment 26%
(adjusted $R^2=.26$), work adjustment 19% (adjusted $R^2=.16$), general adjustment 20% (adjusted
$R^2=.30$), and well-being 29% (adjusted $R^2=.26$). Usefulness analysis shows variance explained
by CQ (.19- 36) compares favorably to variance explained by demographic characteristics of sex
and cross-cultural experience (.01 -.11).

DISCUSSION

The primary goal of this research was to describe development and cross-validation of
the 20-item cultural intelligence scale (CQS) and test substantive predictions based on
inTEGRATION OF THE INTELLIGENCE AND INTERCULTURAL COMPETENCIES LITERATURE. CROSS-VALIDATION
analyses provide strong support for the validity and reliability of the CQS across samples, time,
and countries (Singapore and U.S.). In addition, results in three substantive studies across
different cultural, educational, and work settings (N=794) demonstrate a systematic pattern of
relationships between dimensions of CQ and specific intercultural effectiveness outcomes.
These findings are noteworthy because they show the value of using contemporary
conceptualizations of intelligence as a framework for conceptualizing a set of intercultural competencies: metacognitive CQ, cognitive CQ, motivational CQ, and behavioral CQ.

Results demonstrate that CQ has unique explanatory power in predicting three aspects of intercultural effectiveness (CJDM, cultural adaptation, and task performance), after controlling for other individual characteristics previously shown to influence intercultural effectiveness. These individual characteristics include general mental ability, emotional intelligence, cross-cultural adaptability, Big Five personality, rhetorical sensitivity, social desirability, age, sex, dyadic similarity, and cross-cultural experience. This evidence of incremental validity combined with CFA and AVE evidence of discriminant validity among the four dimensions of CQ as well as between dimensions of CQ and other individual characteristics further support the conceptual distinctiveness and value of CQ as a meaningful individual difference construct. We discuss key substantive findings below.

Our results for the cognitive outcome of cultural judgment and decision making effectiveness (H1) and the affective outcomes of cultural adaptation (H2) are straightforward. Consistent with hypotheses, metacognitive CQ and cognitive CQ positively related to CJDM effectiveness, while motivational CQ and behavioral CQ positively related to two forms of cultural adaptation: cultural adjustment and well-being. This pattern of results supports our contention that cognitive capabilities such as questioning assumptions, adjusting mental models, and rich cultural knowledge schemas are especially important for making accurate judgments and decisions when situations involve cultural diversity. It also supports our arguments that the motivational capability to channel energy productively, even when intercultural situations are stressful, and the behavioral capability to exhibit flexible actions that are culturally appropriate are especially important for coping with actual experiences in culturally diverse situations.
These findings highlight the value of carefully aligning specific CQ capabilities with specific aspects of intercultural effectiveness.

Our third hypothesis involving CQ and task performance received less empirical support. We had argued a priori that all four dimensions of CQ would predict task performance because Campbell (1999) identified knowledge, skills, abilities, and motivation as predictors of job performance and because CQ should enable individuals to understand and enact role expectations in a manner that is culturally sensitive and appropriate. Results, however, revealed that only meta-cognitive and behavioral CQ predicted task performance.

Interestingly, bivariate correlations between motivational CQ and task performance failed to reach significance in Study 2 ($r = .08, ns$) but were significant in Study 3 ($r = .33, p < .05$). This suggests the possibility that differences in the participants (international managers versus foreign professionals), rater perspectives (peers versus supervisors), or characteristics of the task (a short-term project versus ongoing work responsibilities) may have influenced fundamental relationships between motivational CQ and performance. Even in Study 3, however, when the underlying correlation between motivational CQ and task performance was significant, the beta value failed to reach significance when effects of all four aspects of CQ were considered simultaneously in regression analyses. In addition, we note that the bivariate correlation between cognitive CQ and task performance failed to reach significance in Study 2 ($r = .14, ns$) and Study 3 ($r = .13, ns$). Combined, these findings suggest that meta-cognitive CQ and behavioral CQ are more directly relevant to task performance than the other dimensions of CQ.

Our finding that metacognitive CQ and behavioral CQ predict task performance in intercultural settings is consistent with existing conceptual and empirical research on organizational diversity. For instance, Caldwell and O’Reilly (1982) demonstrated that those
who monitored the situation (metacognition) and adapted to the environment (behavioral flexibility) were more effective in boundary spanning jobs that required interactions across groups with different norms. Likewise, Roberts’ (2005) conceptual article on professionals argued for the importance of accurate sense-making and behavioral flexibility for effective and appropriate self-presentation in organizations characterized by diversity. Our study of culturally diverse settings extends these findings to show that meta-cognitive and behavioral capabilities are important for effective task performance.

Predictions for cognitive CQ and motivational CQ relative to task performance were not supported; this suggests the need for additional research. Since role expectations for task performance are core responsibilities that are typically well-structured and well-specified, they may require relatively little knowledge of the larger culture (i.e., cognitive CQ) and relatively little intrinsic interest and self-efficacy to function effectively in culturally diverse situations (i.e., motivational CQ).

Implications for Research and Practice

Our study offers three important implications for intercultural effectiveness research. First, evidence that CQ is conceptually and empirically distinct from other individual differences, such as EI and Big Five, in predicting a range of intercultural effectiveness outcomes suggests the benefits of including CQ when studying culturally diverse situations. Thus, future research on multinational teams, expatriates, overseas work assignments, global leadership, and cross-cultural negotiation may find that inclusion of CQ improves predictions of effectiveness.

Second, the multidimensional conceptualization of CQ and the differential relationships of the dimensions of CQ with specific intercultural effectiveness outcomes suggest the importance of continuing to theorize about and examine CQ as a multidimensional construct,
where specific dimensions of CQ have special relevance to different outcomes. For instance, even though our current findings show that only metacognitive CQ and behavioral CQ were related to task performance, future research can examine whether cognitive CQ and behavioral CQ are important for other forms of job performance, such as contextual and adaptive performance where role expectations are less structured and well-specified. It also would be important to consider these relationships for different roles, jobs, and contexts.

Third, our study has important implications for intercultural training, which has to-date focused primarily on knowledge or cognitive training (Earley and Peterson, 2004). Since our results highlighted metacognitive CQ and behavioral CQ as fundamental capabilities with relevance to multiple intercultural effectiveness outcomes, training programs could include modules on both. For example, Earley and Peterson (2004) outlined training interventions for CQ dimensions. This included cognitive structure analysis for examining knowledge structures and enhancing awareness and reflection (metacognitive CQ). It also included dramaturgical exercises such as role-plays and simulations involving physical, emotional, and sensory processes to enhance behavioral flexibility (behavioral CQ).

Limitations

As with all research, this study has limitations. First, we limited the number of constructs assessed in each survey to avoid participant fatigue. To maximize our understanding of relationships between CQ and other relevant constructs, we included different individual difference constructs in different studies. Thus, we sacrificed consistency of design for breadth of findings. Nevertheless, we suggest that using different CJDM tasks, different aspects of cultural adaptation, different tasks and different raters across settings and samples should enhance generalizability of findings based on overall consistency of demonstrated relationships.
Thus, our results suggest the robustness of metacognitive CQ and cognitive CQ as predictors of CJDM as well as motivational CQ and behavioral CQ as predictors of cultural adaptation.

We recommend that future research extending our findings by examining additional predictors and outcomes of CQ. This could include individual difference characteristics such as self-monitoring, need for cognition, need for closure, self-efficacy, ethnocentrism, self-construal, and social identity as factors that may influence the formation and enhancement of CQ. It also could include additional aspects of intercultural effectiveness such as performance in cross-cultural negotiations, conflict management in culturally diverse groups, adjustment to working on global virtual teams, selection for jobs with international responsibilities, and expatriate performance.

A second limitation is the geographic scope of our contexts. Although we followed recommendations of Kirkman and Law (2005) and cross-validated the CQS scale in two different cultural contexts, future research should consider CQ in additional settings. This could include research in Europe, Africa, Latin American, and the Middle East.

CONCLUSION

In sum, results of three cross-validation samples and three substantive studies provide strong empirical support for the reliability, stability, and validity of the CQS and demonstrate that specific dimensions of CQ have differential relationships with cognitive, affective, and behavioral intercultural effectiveness outcomes. This pattern of relationships is a first step toward enhancing the theoretical precision of CQ. Results also suggest that CQ has important implications for practice – especially for selecting, training, and developing a culturally intelligent workforce. We hope that this work on cultural intelligence sheds insight on why some people are more effective than others in today’s global and “not-so-flat” world.
REFERENCES

Lawrence Erlbaum.

NFER-Nelson, Basingstoke.

job previews, and realistic living conditions preview, and cross-cultural adjustment. Group
and Organization Management, 31: 154-173.

Thorndike, R., & Stein, S. 1937. An evaluation of the attempts to measure social intelligence.

Human Performance, 34: 64-96.

Tsui, A.S., & Gutek, B. 1999. Demographic differences in organizations: Current research

Van Dyne, L. & Ang, S. 2006. Getting more than you expect: Global leader initiative to span
structural holes and reputation effectiveness. In W. H. Mobley & E. Weldon (Eds.),

Vandenberg, R.J., & Lance, C.E. 2000. A review and synthesis of the measurement invariance
literature: Suggestions, practices, and recommendations for organizational research.
Organization Research Methods, 3: 4-69.

predictors of organizational citizenship and in-role behavior. Journal of Management, 17:

TABLE 1
Means, Standard Deviations, Scale Reliabilities, and Inter-Correlations (Study 1, U.S. Sample) *

<table>
<thead>
<tr>
<th></th>
<th>MN</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CJDM</td>
<td>3.03</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>2. Interactional Adjustment</td>
<td>5.90</td>
<td>1.15</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>3. Well-Being</td>
<td>5.34</td>
<td>0.86</td>
<td>0.14*</td>
<td></td>
</tr>
<tr>
<td>4. Metacognitive CQ</td>
<td>5.00</td>
<td>0.93</td>
<td>0.27**</td>
<td>0.23**</td>
<td></td>
</tr>
<tr>
<td>5. Cognitive CQ</td>
<td>3.67</td>
<td>0.97</td>
<td>0.21**</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>6. Motivational CQ</td>
<td>5.35</td>
<td>0.93</td>
<td>0.18**</td>
<td>0.29**</td>
<td>0.30**</td>
<td></td>
</tr>
<tr>
<td>7. Behavioral CQ</td>
<td>4.18</td>
<td>1.18</td>
<td>0.13</td>
<td></td>
<td>0.25**</td>
<td>0.30**</td>
<td></td>
</tr>
<tr>
<td>8. General Mental Ability</td>
<td>24.83</td>
<td>5.86</td>
<td>0.17**</td>
<td></td>
<td>0.07</td>
<td></td>
<td>0.10</td>
<td></td>
<td>0.06</td>
<td></td>
<td>0.02</td>
<td></td>
<td>0.10</td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. EI: Mood Regulation</td>
<td>5.64</td>
<td>0.75</td>
<td>0.15*</td>
<td></td>
<td>0.35**</td>
<td>0.52**</td>
<td>0.41**</td>
<td>0.19**</td>
<td>0.34**</td>
<td>0.19**</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. EI: Appraisals</td>
<td>5.23</td>
<td>0.95</td>
<td>0.17</td>
<td></td>
<td>0.31**</td>
<td>0.30**</td>
<td>0.26**</td>
<td>0.23**</td>
<td>0.20**</td>
<td>0.11</td>
<td></td>
<td>0.51**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. EI: Utilization</td>
<td>5.37</td>
<td>0.79</td>
<td>0.19**</td>
<td></td>
<td>0.34**</td>
<td>0.40**</td>
<td>0.26**</td>
<td>0.24**</td>
<td>0.25**</td>
<td>0.15*</td>
<td>0.55**</td>
<td>0.42**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. EI: Social Skills</td>
<td>5.45</td>
<td>0.75</td>
<td>0.11</td>
<td></td>
<td>0.41**</td>
<td>0.45**</td>
<td>0.38**</td>
<td>0.18**</td>
<td>0.30**</td>
<td>0.22**</td>
<td>0.03</td>
<td></td>
<td>0.70**</td>
<td>0.51**</td>
<td>0.59**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. FFM: Conscientiousness</td>
<td>3.72</td>
<td>0.52</td>
<td>-0.07</td>
<td></td>
<td>0.34**</td>
<td>0.59**</td>
<td>0.23**</td>
<td>0.16*</td>
<td>0.16</td>
<td>0.15</td>
<td>-0.04</td>
<td></td>
<td>0.43**</td>
<td>0.21**</td>
<td>0.22**</td>
<td>0.38**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. FFM: Openness</td>
<td>3.28</td>
<td>0.49</td>
<td>0.28**</td>
<td>0.15</td>
<td>0.16*</td>
<td>0.27**</td>
<td>0.23**</td>
<td>0.23**</td>
<td>0.28**</td>
<td>0.19**</td>
<td>0.24**</td>
<td>0.22**</td>
<td>0.35**</td>
<td>0.27**</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. FFM: Extraversion</td>
<td>3.68</td>
<td>0.49</td>
<td>0.01</td>
<td></td>
<td>0.35**</td>
<td>0.47**</td>
<td>0.20**</td>
<td>0.05</td>
<td>0.19**</td>
<td>0.01</td>
<td>0.06</td>
<td></td>
<td>0.48**</td>
<td>0.28**</td>
<td>0.26**</td>
<td>0.59**</td>
<td>0.44**</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. FFM: Agreeableness</td>
<td>3.54</td>
<td>0.50</td>
<td>-0.03</td>
<td></td>
<td>0.30**</td>
<td>0.29**</td>
<td>0.11</td>
<td>-0.08</td>
<td>0.04</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
<td>0.34**</td>
<td>0.28**</td>
<td>0.16**</td>
<td>0.40**</td>
<td>0.31**</td>
<td>0.10</td>
<td></td>
<td>0.50**</td>
<td></td>
</tr>
<tr>
<td>17. FFM: Stability</td>
<td>3.28</td>
<td>0.61</td>
<td>0.05</td>
<td></td>
<td>0.29**</td>
<td>0.50**</td>
<td>0.18**</td>
<td>0.10</td>
<td>0.18**</td>
<td>0.05</td>
<td>0.03</td>
<td>0.48**</td>
<td>0.23**</td>
<td>0.12</td>
<td>0.27**</td>
<td>0.48**</td>
<td>0.04</td>
<td>0.49**</td>
<td>0.33**</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>18. Age</td>
<td>21.53</td>
<td>1.91</td>
<td>0.09</td>
<td></td>
<td>-0.01</td>
<td>0.10</td>
<td>0.03</td>
<td>0.11</td>
<td>-0.12</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.07</td>
<td>0.09</td>
<td>0.05</td>
<td>0.00</td>
<td>0.10</td>
<td>-0.06</td>
<td>0.10</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Sex b</td>
<td>0.55</td>
<td>0.50</td>
<td>0.06</td>
<td>-0.16*</td>
<td>-0.16*</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
<td>-0.00</td>
<td>-0.05</td>
<td>0.07</td>
<td>-0.10</td>
<td>-0.24**</td>
<td>-0.09</td>
<td>-0.12</td>
<td>-0.22**</td>
<td>-0.34**</td>
<td>0.12</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>20. Cross-Cultural Experience</td>
<td>2.16</td>
<td>0.49</td>
<td>0.12</td>
<td></td>
<td>0.20**</td>
<td>0.12</td>
<td>0.22**</td>
<td>0.26**</td>
<td>0.40**</td>
<td>0.12</td>
<td>-0.10</td>
<td>0.14*</td>
<td>0.12</td>
<td>0.06</td>
<td>0.18**</td>
<td>0.09</td>
<td>0.07</td>
<td>0.14*</td>
<td>0.02</td>
<td>0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

* n=235. Reliability coefficients are in parenthesis along the diagonal.

b 0 = female, 1 = male
*p<.05 **p<.01

CJDM – Cultural Judgment and Decision Making; EI – Emotional Intelligence; FFM – Five Factor Model of Personality
TABLE 2
Means, Standard Deviations, Scale Reliabilities, and Inter-Correlations (Study 1, Singapore Sample)

<table>
<thead>
<tr>
<th></th>
<th>MN</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CJDM</td>
<td>7.82</td>
<td>4.13</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2. Interactional Adjustment</td>
<td>5.46</td>
<td>0.82</td>
<td>.07</td>
<td>(.95)</td>
<td></td>
</tr>
<tr>
<td>3. Well-Being</td>
<td>4.63</td>
<td>0.83</td>
<td>-.05</td>
<td>.45**</td>
<td>(.84)</td>
<td></td>
</tr>
<tr>
<td>4. Metacognitive CQ</td>
<td>4.51</td>
<td>0.68</td>
<td>.17**</td>
<td>.18**</td>
<td>.24**</td>
<td>(.70)</td>
<td></td>
</tr>
<tr>
<td>5. Cognitive CQ</td>
<td>3.14</td>
<td>0.80</td>
<td>.12*</td>
<td>.13*</td>
<td>.24**</td>
<td>.32**</td>
<td>(.88)</td>
<td></td>
</tr>
<tr>
<td>6. Motivational CQ</td>
<td>4.61</td>
<td>0.67</td>
<td>.08</td>
<td>.32**</td>
<td>.36**</td>
<td>.40**</td>
<td>.29**</td>
<td>(.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Behavioral CQ</td>
<td>4.12</td>
<td>0.90</td>
<td>.09</td>
<td>.16**</td>
<td>.23**</td>
<td>.41**</td>
<td>.44**</td>
<td>.23**</td>
<td>(.87)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. General Mental Ability</td>
<td>25.11</td>
<td>5.76</td>
<td>-.01</td>
<td>.11*</td>
<td>-.06</td>
<td>.06</td>
<td>.00</td>
<td>.07</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. EI</td>
<td>5.02</td>
<td>0.57</td>
<td>.02</td>
<td>.40**</td>
<td>.49**</td>
<td>.19**</td>
<td>.14**</td>
<td>.28**</td>
<td>.12*</td>
<td>.04</td>
<td>(.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. CCAI: Autonomy</td>
<td>4.31</td>
<td>0.43</td>
<td>.11</td>
<td>.34**</td>
<td>.38**</td>
<td>.20**</td>
<td>.07</td>
<td>.30**</td>
<td>.07</td>
<td>-.04</td>
<td>.35**</td>
<td>(.59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. CCAI: Resilience</td>
<td>3.98</td>
<td>0.42</td>
<td>-.02</td>
<td>.41**</td>
<td>.50**</td>
<td>.21**</td>
<td>.22**</td>
<td>.48**</td>
<td>.09</td>
<td>.00</td>
<td>.48**</td>
<td>.54**</td>
<td>(.82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. CCAI: Flexibility</td>
<td>3.92</td>
<td>0.38</td>
<td>.01</td>
<td>.36**</td>
<td>.29**</td>
<td>.19**</td>
<td>.08</td>
<td>.38**</td>
<td>.10</td>
<td>-.00</td>
<td>.32**</td>
<td>.42**</td>
<td>.58**</td>
<td>(.66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. CCAI: Acuity</td>
<td>4.31</td>
<td>0.42</td>
<td>.18**</td>
<td>.31**</td>
<td>.36**</td>
<td>.17**</td>
<td>.28**</td>
<td>.27**</td>
<td>-.05</td>
<td>.32**</td>
<td>.48**</td>
<td>.39**</td>
<td>.45**</td>
<td>(.74)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Age</td>
<td>19.46</td>
<td>1.05</td>
<td>-.09</td>
<td>.05</td>
<td>.21**</td>
<td>.02</td>
<td>.20**</td>
<td>.09</td>
<td>.13*</td>
<td>.26**</td>
<td>.04</td>
<td>.05</td>
<td>.10</td>
<td>-.04</td>
<td>-.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15. Sex b</td>
<td>0.24</td>
<td>0.43</td>
<td>-.07</td>
<td>.06</td>
<td>.23**</td>
<td>.03</td>
<td>.20**</td>
<td>.09</td>
<td>.09</td>
<td>.34**</td>
<td>.13*</td>
<td>.02</td>
<td>.14**</td>
<td>-.03</td>
<td>-.03</td>
<td>.65**</td>
<td>-</td>
</tr>
<tr>
<td>16. Cross-Cultural Experience</td>
<td>1.78</td>
<td>0.44</td>
<td>.02</td>
<td>.08</td>
<td>.07</td>
<td>.15**</td>
<td>.25**</td>
<td>.23**</td>
<td>.10</td>
<td>.01</td>
<td>.08</td>
<td>.05</td>
<td>.14**</td>
<td>.10*</td>
<td>.14**</td>
<td>-.05</td>
<td>.07</td>
</tr>
</tbody>
</table>

a n=358. Reliability coefficients are in parenthesis along the diagonal.
b 0 = female, 1 = male
* p<.05 ** p<.01
CJDM – Cultural Judgment and Decision Making; EI – Emotional Intelligence; CCAI – Cross Cultural Adaptability Inventory
TABLE 3

Regression of Cultural Intelligence on Cultural Judgment and Decision Making and Cultural Adaptation (Study 1, U.S. Sample) *

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cultural Judgment and Decision Making</th>
<th>Cultural Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td>Age</td>
<td>.07</td>
<td>.06</td>
</tr>
<tr>
<td>Sex b</td>
<td>.07</td>
<td>.05</td>
</tr>
<tr>
<td>Cross-Cultural Experience</td>
<td>.11</td>
<td>.10</td>
</tr>
<tr>
<td>General Mental Ability (GMA)</td>
<td>.14*</td>
<td>.13</td>
</tr>
<tr>
<td>EI: Optimism/Mood Regulation</td>
<td>.23**</td>
<td>.16*</td>
</tr>
<tr>
<td>EI: Appraisals of Emotions</td>
<td>.00</td>
<td>-.03</td>
</tr>
<tr>
<td>EI: Utilization of Emotions</td>
<td>.08</td>
<td>.04</td>
</tr>
<tr>
<td>EI: Social Skills</td>
<td>.16</td>
<td>.06</td>
</tr>
<tr>
<td>FFM: Conscientiousness</td>
<td>-.07</td>
<td>-.09</td>
</tr>
<tr>
<td>FFM: Openness</td>
<td>.18*</td>
<td>.17*</td>
</tr>
<tr>
<td>FFM: Extraversion</td>
<td>-.14</td>
<td>-.08</td>
</tr>
<tr>
<td>FFM: Agreeableness</td>
<td>-.08</td>
<td>-.01</td>
</tr>
<tr>
<td>FFM: Stability</td>
<td>.01</td>
<td>.00</td>
</tr>
<tr>
<td>Metacognitive CQ</td>
<td></td>
<td>.21**</td>
</tr>
<tr>
<td>Cognitive CQ</td>
<td></td>
<td>.16*</td>
</tr>
<tr>
<td>Motivational CQ</td>
<td></td>
<td>.05</td>
</tr>
<tr>
<td>Behavioral CQ</td>
<td></td>
<td>-.04</td>
</tr>
</tbody>
</table>

F	1.61	2.82***	2.92***	6.56***	6.95***	6.13***	2.64	13.07***	11.12***
ΔF	3.13**	2.85*	6.47***	2.59*	15.58***	2.91*			
R^2	.02	.17	.22	.10	.35	.39	.04	.49	.53
ΔR^2	.15	.05	.25	.04	.45	.04			
Adjusted R^2	.01	.11	.14	.08	.30	.32	.03	.46	.48

Usefulness Analysis:

- GMA ΔR^2 (EI+FFM+CQ in step2) .02 .01 .01
- EI ΔR^2 (GMA+FFM+CQ in step2) .02 .05 .05
- FFM ΔR^2 (GMA+EI+CQ in step2) .04 .07 .17

*a n=235 b 0 = female, 1 = male * p<.05 ** p<.01 *** p<.001
EI – Emotional Intelligence; FFM – Five Factor Model of Personality; GMA – General Mental Ability.
TABLE 4
Regression of Cultural Intelligence on Cultural Judgment and Decision Making and Cultural Adaptation (Study 1, Singapore Sample) a

<table>
<thead>
<tr>
<th>Variable</th>
<th>CJDM</th>
<th>Cultural Adaptation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 3</td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 3</td>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td>Age</td>
<td>-.08</td>
<td>-.06</td>
<td>-.07</td>
<td>-.13</td>
<td>-.13*</td>
<td>-.16*</td>
<td>.13</td>
<td>.14*</td>
</tr>
<tr>
<td>Sex b</td>
<td>-.02</td>
<td>-.03</td>
<td>-.04</td>
<td>.14*</td>
<td>.09</td>
<td>.09</td>
<td>.15*</td>
<td>.08</td>
</tr>
<tr>
<td>Cross-Cultural Experience</td>
<td>.03</td>
<td>-.01</td>
<td>-.04</td>
<td>.05</td>
<td>.01</td>
<td>.01</td>
<td>-.02</td>
<td>.05</td>
</tr>
<tr>
<td>General Mental Ability (GMA)</td>
<td>.03</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
<td>.06</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>EI</td>
<td>-.06</td>
<td>-.07</td>
<td>.23***</td>
<td>.21***</td>
<td>.34***</td>
<td>.33***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCAI: Personal Autonomy</td>
<td>.01</td>
<td>.00</td>
<td>.19***</td>
<td>.18***</td>
<td>.10*</td>
<td>.10*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCAI: Emotional Resilience</td>
<td>.01</td>
<td>-.02</td>
<td>.17**</td>
<td>.12*</td>
<td>.24***</td>
<td>.19***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCAI: Flexibility</td>
<td>.18**</td>
<td>.18**</td>
<td>.20***</td>
<td>.17**</td>
<td>.09</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCAI: Perceptual Acuity</td>
<td>.18**</td>
<td>.14*</td>
<td>.03</td>
<td>-.01</td>
<td>.19***</td>
<td>.15**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognitive CQ</td>
<td></td>
<td></td>
<td>.15*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
</tr>
<tr>
<td>Cognitive CQ</td>
<td></td>
<td></td>
<td>.13*</td>
<td></td>
<td></td>
<td></td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td>Motivational CQ</td>
<td>.00</td>
<td></td>
<td>.13*</td>
<td></td>
<td></td>
<td></td>
<td>.12*</td>
<td></td>
</tr>
<tr>
<td>Behavioral CQ</td>
<td>.00</td>
<td></td>
<td>.10*</td>
<td></td>
<td></td>
<td></td>
<td>.09*</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.04</td>
<td>2.16*</td>
<td>2.31**</td>
<td>2.03</td>
<td>12.24***</td>
<td>9.52***</td>
<td>8.13***</td>
<td>23.20***</td>
</tr>
<tr>
<td>ΔF</td>
<td>2.70*</td>
<td>2.56*</td>
<td>17.06***</td>
<td>2.82*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.01</td>
<td>.06</td>
<td>.09</td>
<td>.02</td>
<td>.24</td>
<td>.27</td>
<td>.07</td>
<td>.38</td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.05</td>
<td>.03</td>
<td>.22</td>
<td>.03</td>
<td>.31</td>
<td>.31</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>.00</td>
<td>.03</td>
<td>.05</td>
<td>.01</td>
<td>.22</td>
<td>.24</td>
<td>.06</td>
<td>.37</td>
</tr>
</tbody>
</table>

Usefulness Analysis:

- GMA ΔR^2 (EI+CCAI+CQ in step2): .00
- EI ΔR^2 (GMA+CCAI+CQ in step2): .00
- CCAI ΔR^2 (GMA+EI+CQ in step2): .04

$n=358$ a $^b = $ female, 1 = male $^* p<.05$ $^{**} p<.01$ $^{***} p<.001$

EI – Emotional Intelligence; CCAI – Cross Cultural Adaptability Inventory; GMA – General Mental Ability
TABLE 5
Means, Standard Deviations, Scale Reliabilities, and Inter-Correlations (Study 2) ^a

<table>
<thead>
<tr>
<th></th>
<th>MN</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CJDM</td>
<td>65.63</td>
<td>7.47</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Task Performance</td>
<td>6.03</td>
<td>0.96</td>
<td>.36*</td>
<td>.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Metacognitive CQ</td>
<td>5.41</td>
<td>0.78</td>
<td>.33*</td>
<td>.33</td>
<td>.46**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Cognitive CQ</td>
<td>3.80</td>
<td>1.03</td>
<td>.39**</td>
<td>.39</td>
<td>.14</td>
<td>.30**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Motivational CQ</td>
<td>5.82</td>
<td>0.75</td>
<td>.21</td>
<td>.21</td>
<td>.49**</td>
<td>.23*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Behavioral CQ</td>
<td>4.98</td>
<td>0.99</td>
<td>.11</td>
<td>.11</td>
<td>.37**</td>
<td>.32**</td>
<td>.22*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>General Mental Ability</td>
<td>29.06</td>
<td>3.02</td>
<td>.01</td>
<td>.01</td>
<td>.25*</td>
<td>.52</td>
<td>.02</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Rhetorical Sensitivity</td>
<td>5.22</td>
<td>0.88</td>
<td>.07</td>
<td>.07</td>
<td>.03</td>
<td>.22*</td>
<td>.11</td>
<td>.22</td>
<td>.34**</td>
<td>.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Social Desirability</td>
<td>0.57</td>
<td>0.14</td>
<td>.31*</td>
<td>.31</td>
<td>.17</td>
<td>.07</td>
<td>.07</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Sex <sup>b</sup></td>
<td>0.64</td>
<td>0.48</td>
<td>.11</td>
<td>.11</td>
<td>.10</td>
<td>.04</td>
<td>.05</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Citizenship <sup>c</sup></td>
<td>0.69</td>
<td>0.47</td>
<td>.10</td>
<td>.10</td>
<td>.03</td>
<td>.07</td>
<td>.06</td>
<td>.24</td>
<td>.24</td>
<td>.24</td>
<td>.24</td>
<td>.03</td>
<td>.30**</td>
</tr>
<tr>
<td>12.</td>
<td>Cross-Cultural Experience</td>
<td>1.58</td>
<td>2.03</td>
<td>.07</td>
<td>.07</td>
<td>.14</td>
<td>.34**</td>
<td>.26</td>
<td>.32**</td>
<td>.32</td>
<td>.32</td>
<td>.09</td>
<td>.21</td>
<td>.08</td>
</tr>
<tr>
<td>13.</td>
<td>Dyadic Similarity <sup>d</sup></td>
<td>0.25</td>
<td>0.44</td>
<td>.23</td>
<td>.23</td>
<td>.16</td>
<td>.05</td>
<td>.14</td>
<td>.18</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
</tbody>
</table>

^a n = 98. Reliability coefficients are in parenthesis along the diagonal

^b 0 = female, 1 = male
^c 0 = local, 1 = foreign
^d 0 = different country, 1 = same country

* p<.05 ** p<.01

CJDM – Cultural Judgment and Decision Making
TABLE 6
Regression of Cultural Intelligence on Cultural Judgment and Decision Making and Task Performance (Study 2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>CJDM</th>
<th>Task Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td>Sex b</td>
<td>-.11</td>
<td>-.14</td>
</tr>
<tr>
<td>Citizenship c</td>
<td>.15</td>
<td>.16</td>
</tr>
<tr>
<td>Cross-Cultural Experience</td>
<td>.08</td>
<td>.12</td>
</tr>
<tr>
<td>Dyadic Similarity d</td>
<td>-.15</td>
<td>-.16</td>
</tr>
<tr>
<td>General Mental Ability (GMA)</td>
<td>.15</td>
<td>.15</td>
</tr>
<tr>
<td>Rhetorical Sensitivity</td>
<td>.04</td>
<td>-.10</td>
</tr>
<tr>
<td>Social Desirability</td>
<td>-.33*</td>
<td>-.32*</td>
</tr>
<tr>
<td>Metacognitive CQ</td>
<td>.30*</td>
<td></td>
</tr>
<tr>
<td>Cognitive CQ</td>
<td>.37*</td>
<td></td>
</tr>
<tr>
<td>Motivational CQ</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>Behavioral CQ</td>
<td>.28</td>
<td></td>
</tr>
</tbody>
</table>

F	0.75	1.21	2.13*	1.11	1.63	3.11**
ΔF	1.78	3.26*	2.21	4.90**		
R^2	.06	.17	.39	.07	.17	.41
ΔR^2	.11	.22	.10	.24		
Adjusted R^2	-.02	.03	.21	.01	.07	.28

Usefulness Analysis:
- GMA ΔR^2 (Rhetorical Sensitivity + Social Desirability + CQ in step2): 0.02, 0.03
- Rhetorical Sensitivity ΔR^2 (GMA + Social Desirability + CQ in step2): 0.01, 0.05
- Social Desirability ΔR^2 (GMA + Rhetorical Sensitivity + CQ in step2): 0.09, 0.07

$n = 98$
$b = 0 = \text{female}, 1 = \text{male}$
$c = 0 = \text{local}, 1 = \text{foreign}$
$d = 0 = \text{different country}, 1 = \text{same country}$
*p < .05 **p < .01
TABLE 7

Means, Standard Deviations, Scale Reliabilities, and Inter-Correlations (Study 3)

<table>
<thead>
<tr>
<th></th>
<th>MN</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Task Performance (supervisor)</td>
<td>5.68</td>
<td>0.69</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>2. Interactional Adjustment (supervisor)</td>
<td>5.71</td>
<td>0.68</td>
<td>.47**</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>3. Work Adjustment (supervisor)</td>
<td>5.36</td>
<td>0.79</td>
<td>.77**</td>
<td>.46**</td>
<td>.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Interactional Adjustment (self)</td>
<td>5.75</td>
<td>0.85</td>
<td>.39*</td>
<td>.21</td>
<td>.36*</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Work Adjustment (self)</td>
<td>6.02</td>
<td>0.63</td>
<td>.34*</td>
<td>.32*</td>
<td>.35*</td>
<td>.45**</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. General Adjustment (self)</td>
<td>5.77</td>
<td>0.64</td>
<td>.38*</td>
<td>.21</td>
<td>.44**</td>
<td>.58**</td>
<td>.45**</td>
<td>.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Well-Being (self)</td>
<td>5.80</td>
<td>0.66</td>
<td>.16</td>
<td>.22</td>
<td>.27</td>
<td>.35**</td>
<td>.60**</td>
<td>.30**</td>
<td>.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Metacognitive CQ</td>
<td>4.25</td>
<td>1.25</td>
<td>.55**</td>
<td>.33*</td>
<td>.36*</td>
<td>.17</td>
<td>.14</td>
<td>.20*</td>
<td>.18</td>
<td>.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Cognitive CQ</td>
<td>4.72</td>
<td>0.92</td>
<td>.13</td>
<td>.17</td>
<td>.18</td>
<td>.35**</td>
<td>.18</td>
<td>.33**</td>
<td>.31**</td>
<td>.28**</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Motivational CQ</td>
<td>5.70</td>
<td>0.68</td>
<td>.33*</td>
<td>.49**</td>
<td>.41**</td>
<td>.48**</td>
<td>.44**</td>
<td>.40**</td>
<td>.50**</td>
<td>.23*</td>
<td>.40**</td>
<td>.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Behavioral CQ</td>
<td>5.01</td>
<td>0.99</td>
<td>.37*</td>
<td>.36*</td>
<td>.41**</td>
<td>.36**</td>
<td>.27**</td>
<td>.36**</td>
<td>.33**</td>
<td>.53**</td>
<td>.29**</td>
<td>.40**</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>12. Sex b</td>
<td>0.83</td>
<td>0.37</td>
<td>-0.08</td>
<td>0.03</td>
<td>-0.06</td>
<td>-0.19</td>
<td>-0.09</td>
<td>-0.37**</td>
<td>-0.00</td>
<td>-0.17</td>
<td>-0.04</td>
<td>-0.11</td>
<td>-0.17</td>
<td>-</td>
</tr>
<tr>
<td>13. Cross-Cultural Experience</td>
<td>3.28</td>
<td>5.83</td>
<td>.16</td>
<td>.01</td>
<td>.12</td>
<td>-0.00</td>
<td>0.09</td>
<td>0.04</td>
<td>0.14</td>
<td>-0.02</td>
<td>0.16</td>
<td>-0.08</td>
<td>-0.15</td>
<td>.12</td>
</tr>
</tbody>
</table>

a $n = 103$. Reliability coefficients are in parenthesis along the diagonal
b $0 = female, 1 = male$
* $p<.05$
** $p<.01$
TABLE 8

Regression of Cultural Intelligence on Task Performance and Cultural Adaptation (Study 3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 1</td>
</tr>
<tr>
<td>Sex b</td>
<td>-.19</td>
<td>-.12</td>
<td>-.10</td>
<td>-.04</td>
<td>-.38***</td>
<td>-.32***</td>
<td>-.02</td>
</tr>
<tr>
<td>Cross-Cultural Experience</td>
<td>.02</td>
<td>.06</td>
<td>.10</td>
<td>.15</td>
<td>.09</td>
<td>.13</td>
<td>.14</td>
</tr>
<tr>
<td>Metacognitive CQ</td>
<td></td>
<td></td>
<td>.03</td>
<td>.06</td>
<td>.02</td>
<td>.07</td>
<td>.21</td>
</tr>
<tr>
<td>Cognitive CQ</td>
<td>.17</td>
<td>.06</td>
<td>.17</td>
<td>.13</td>
<td>.04</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Motivational CQ</td>
<td>.41***</td>
<td>.39***</td>
<td>.33***</td>
<td>.47***</td>
<td>.42**</td>
<td>.41**</td>
<td>.41**</td>
</tr>
<tr>
<td>Behavioral CQ</td>
<td>.27**</td>
<td>.19*</td>
<td>.26**</td>
<td>.19*</td>
<td>.28*</td>
<td>.35*</td>
<td>.31*</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.81</td>
<td>6.69***</td>
<td>.88</td>
<td>4.09**</td>
<td>8.13**</td>
<td>8.07***</td>
<td>.92</td>
<td>6.69***</td>
<td>.02</td>
<td>2.69*</td>
<td>.38</td>
<td>2.65*</td>
<td>.70</td>
<td>3.78**</td>
</tr>
</tbody>
</table>

ΔF

| 8.83***| 5.62***| 7.01***| 9.41***| 4.03***| 3.73* | 5.17** |

R^2

| .04 | .30 | .02 | .21 | .15 | .35 | .02 | .31 | .00 | .28 | .02 | .31 | .03 | .39 |

ΔR^2

| .26 | .19 | .20 | .29 | .28 | .29 | .36 |

Adjusted R^2

| .02 | .26 | -.00 | .16 | .13 | .30 | .00 | .26 | -.04 | .18 | -.03 | .19 | -.01 | .29 |

Usefulness Analysis:

Controls ΔR^2 (CQ in step1)

| .01 | .02 | .11 | .03 | .01 | .04 | .06 |

$^a n = 103$

$^b 0 =$ female, $1 =$ male

* $p<.05$ ** $p<.01$ *** $p<.001$
APPENDIX

The Cultural Intelligence Scale (CQS)

Read each statement and select the response that best describes your capabilities.
Select the answer that BEST describes you AS YOU REALLY ARE (1=strongly disagree; 7=strongly agree)

<table>
<thead>
<tr>
<th>CQ Factor</th>
<th>Questionnaire Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metacognitive CQ:</td>
<td></td>
</tr>
<tr>
<td>MC1</td>
<td>I am conscious of the cultural knowledge I use when interacting with people with different cultural backgrounds.</td>
</tr>
<tr>
<td>MC2</td>
<td>I adjust my cultural knowledge as I interact with people from a culture that is unfamiliar to me.</td>
</tr>
<tr>
<td>MC3</td>
<td>I am conscious of the cultural knowledge I apply to cross-cultural interactions.</td>
</tr>
<tr>
<td>MC4</td>
<td>I check the accuracy of my cultural knowledge as I interact with people from different cultures.</td>
</tr>
<tr>
<td>Cognitive CQ:</td>
<td></td>
</tr>
<tr>
<td>COG1</td>
<td>I know the legal and economic systems of other cultures.</td>
</tr>
<tr>
<td>COG2</td>
<td>I know the rules (e.g., vocabulary, grammar) of other languages.</td>
</tr>
<tr>
<td>COG3</td>
<td>I know the cultural values and religious beliefs of other cultures.</td>
</tr>
<tr>
<td>COG4</td>
<td>I know the marriage systems of other cultures.</td>
</tr>
<tr>
<td>COG5</td>
<td>I know the arts and crafts of other cultures.</td>
</tr>
<tr>
<td>COG6</td>
<td>I know the rules for expressing non-verbal behaviors in other cultures.</td>
</tr>
<tr>
<td>Motivational CQ:</td>
<td></td>
</tr>
<tr>
<td>MOT1</td>
<td>I enjoy interacting with people from different cultures.</td>
</tr>
<tr>
<td>MOT2</td>
<td>I am confident that I can socialize with locals in a culture that is unfamiliar to me.</td>
</tr>
<tr>
<td>MOT3</td>
<td>I am sure I can deal with the stresses of adjusting to a culture that is new to me.</td>
</tr>
<tr>
<td>MOT4</td>
<td>I enjoy living in cultures that are unfamiliar to me.</td>
</tr>
<tr>
<td>MOT5</td>
<td>I am confident that I can get accustomed to the shopping conditions in a different culture.</td>
</tr>
<tr>
<td>Behavioral CQ:</td>
<td></td>
</tr>
<tr>
<td>BEH1</td>
<td>I change my verbal behavior (e.g., accent, tone) when a cross-cultural interaction requires it.</td>
</tr>
<tr>
<td>BEH2</td>
<td>I use pause and silence differently to suit different cross-cultural situations.</td>
</tr>
<tr>
<td>BEH3</td>
<td>I vary the rate of my speaking when a cross-cultural situation requires it.</td>
</tr>
<tr>
<td>BEH4</td>
<td>I change my non-verbal behavior when a cross-cultural situation requires it.</td>
</tr>
<tr>
<td>BEH5</td>
<td>I alter my facial expressions when a cross-cultural interaction requires it.</td>
</tr>
</tbody>
</table>

© Cultural Intelligence Center 2005. Used by permission of Cultural Intelligence Center.
Note. Use of this scale granted to academic researchers for research purposes only.
For information on using the scale for purposes other than academic research (e.g., consultants
and non-academic organizations), please send an email to cquery@culturalq.com
Notes

The authors would like to thank Larry Farh, Anne Tsui, and two anonymous reviewers of this paper for their constructive comments and exceptional editorial advice. We would like to thank D. Conlon, P. C. Earley, and D. R. Ilgen, for their earlier feedback on this research. We also thank S. Humphrey, C. H. Lee, C. Meyer, S. Polhamus, and J. S. Tan, for help with data collection; and both C. Liu and Y. Xu for their assistance in the Chinese translation. Earlier versions of this paper were presented at the Academy of Management meetings 2004, Society of Industrial and Organizational Psychology (SIOP), 2004; International Academy of Intercultural Relations (IAIR), 2004; 2005; the American Psychological Association, 2005; the Nanyang-Shanghai Jiaotong Conference on Cultural Intelligent Leadership, 2005; the International Congress of Applied Psychology, 2006; Euromed-Metizo Conference on Personal Development, 2006; and the inaugural Symposium on Cultural Intelligence, 2006.
Biographies:

Soon Ang (asang@ntu.edu.sg) (Ph.D. Minnesota) is Chair Professor and Executive Director of the Center for Leadership and Cultural Intelligence at Nanyang Technological University. She co-authored two pioneer books on Cultural Intelligence (Stanford University Press), and has published in *Academy of Management Journal, Journal of Applied Psychology, Management Science, Organization Science, Social Forces* etc. She has won research awards including Best Paper (Academy of Management); Best Reviewer (Human Relations); and Distinguished Leadership Award (University of Minnesota).

Linn Van Dyne (vandyne@msu.edu), Professor, (Ph.D. University of Minnesota) has two major research programs: proactive employee behaviors and cultural intelligence. Her publications include *Academy of Management Journal, Academy of Management Review, Journal of Applied Psychology, Organizational Behavior and Human Decision Processes, Research in Organizational Behavior, etc.* She is Fellow - Society of Organizational Behavior, and member - Academy of Management, Society for Industrial and Organizational Psychology, American Psychological Association, and American Psychological Society.

Christine Koh (askkoh@ntu.edu.sg) (Ph.D. Nanyang Technological University) is Assistant Professor at Nanyang Technological University. Her research interests include cross-cultural issues in managing IT professionals and outsourcing management. Her papers have been published in *Information Systems Research, MIS Quarterly, Group and Organization Management, Journal of IT Cases and Applications, and Journal of Global IT Management.* She is the Director of Technology and Psychometrics at the Center for Leadership and Cultural Intelligence.

Kok-Yee Ng (akyng@ntu.edu.sg) (Ph.D. Michigan State University) is Associate Professor and Director of Research at the Center for Leadership and Cultural Intelligence at Nanyang Technological University. Her research interests are mainly in cross-cultural organizational behavior, focusing on areas such as cultural intelligence, leadership, trust and teams. She has published in *Academy of Management Journal, Journal of Applied Psychology, Management Science, and Organizational Behavior and Human Decision Processes.*

Klaus J Templer (akjtempler@ntu.edu.sg) (Ph.D. University of Hamburg, Germany) is an Associate Professor of organizational behavior and business psychology at Nanyang Business School, Nanyang Technological University, Singapore. Before re-joining academia in 2001, Klaus worked for 15 years in a large multinational company in Germany and India as organizational psychologist and in-house consultant, and as HR manager responsible for expatriate assignments. His research interests include cultural intelligence, expatriate management, selection and assessment, and personality at work.

Cheryl Tay (actay@ntu.edu.sg) (Ph.D. Nanyang Technological University) is an Assistant Professor of Management in the Nanyang Business School, Nanyang
Technological University, Singapore. Her research interests include the study of individual differences, e.g., cultural intelligence, personality, and self-efficacy at work and in cross boundary issues, such as work-life, expatriate management and business travels. She is the Director of Program and Assessment at the Center for Leadership and Cultural Intelligence.

N. Anand Chandrasekar (chandrasekara@leaders.ccl.org) (M.Bus. Nanyang Technological University) is presently a research associate at the Center for Creative Leadership-Asia. He did his graduate studies at Nanyang Business School, Nanyang Technological University, Singapore. His current research interests include leadership development, cultural intelligence, expatriate management, work stress and job-burnout.