MANAGEMENT
INFORMATION
SYSTEMS

Edited by
Gordon B. Davis

Carlson School of Management,
University of Minnesota



Encyclopedia Editor: Cary L. Cooper
Advisory Editors: Chris Argyris and William H. Starbuck

Volume I: Accounting

Edited by Colin Clubb (and A. Rashad Abdel-Khalik)

Volume II: Business Ethics
Edited by Patricia H. Werhane and R. Edward Freeman

Volume III: Entrepreneurship
Edited by Michael A. Hitt and R. Duane Ireland

Volume 1V: Finance
Edited by Ian Garrett (and Dean Paxson and Douglas Wood)

Volume V: Human Resource Management
Edited by Susan Cartwright (and Lawrence H. Peters, Charles R. Greer, and Stuart A.
Youngblood)

Volume VI: International Management
Edited by Jeanne McNett, Henry W. Lane, Martha L. Maznevski, Mark E. Méndenhall, and
John O’Connell

Volume VII: Management Information Systems
Edited by Gordon B. Davis

Volume VIII: Managerial Economics
Edited by Robert E. McAuliffe

Volume IX: Marketing
Edited by Dale Littler

Volume X: Operations Management
Edited by Nigel Slack and Michael Lewis

Volume XI: Organizational Behavior
Edited by Nigel Nicholson, Pino G. Audia, and Madan M. Pillutla

Volume XII: Strategic Management
Edited by John McGee (and Derek F. Channon)

Index



agency theory applied to information systems 3

Similar access is available from regulatory agen-
cies in other countries.

ACM

The Association for Computing Machinery 1s
the largest broad-based international computer
and information system society (see ASSOCI-
ATIONS AND SOCIETIES FOR INFORMATION
SYSTEMS PROFESSIONALS).

ADA

ADA is a general-purpose programming lan-
guage sponsored by the US Department of De-
fense. It is especially suited for the programming

of large, long-lived systems with a need for on-.

going maintenance. It supports modern program-
ming structured techniques and concurrent
processing.

Adobe Acrobat

s¢¢ PORTABLE DATA FORMAT

agency theory applied to information
systems

Soon Ang

Agency theory examines the contracts between a
party (the principal) who delegates work to an-
other (the agent). Agency relations become
problematic when the principal and agent have
conflicting goals and when it is difficult or costly
for the principal to monitor the performance of
the agent. When goals are incongruent, the agent
is assumed to have a different set of incentive
structures from the principal; the agent will con-
sume perquisites out of the principal’s resources
and make suboptimal decisions. These activities
produce efficiency losses to the principal. To
counter these losses, the principal designs con-
tracts to align the goals at the lowest possible

cacte (Cacte ran arica fram nravidine incantivan

and from monitoring to insure that the agent is
acting for the principal’s interests.

Agency theory can offer insights for informa-
tion systems. First, principals can design infor-
mation systems to monitor the actions of agents.
Electronic communication systems, electronic
feedback systems, and electronic monitoring
systems are examples of monitoring devices
that can be implemented to insure that agent
behaviors are aligned with principal interests.

Secondly, information systems professionals
themselves often enter into agency relationships
with other stakeholders in organizations and
agency problems can arise. Important examples
of such agency relationships include systems de-
velopment, outsourcing (see IT OUTSOURCING),
and end-user computing.

SYSTEMS DEVELOPMENT

As principals, users often engage information
system (IS) professionals as agents to develop
information systems on their behalf. Due to a
lack of understanding and knowledge of each
other’s domain, goal conflict may arise between
the two parties. To reduce agency costs, one or
both parties must try to narrow goal differences.
IS professionals can invite users to participate
more actively throughout the development life
cycle. This gives the users more opportunities to
verify requirements and insure that the final
system is aligned with user needs. Further,
users may request that the information system
produce information-rich documentation so that
monitoring is made easier and more readily
available to users.

OUTSOURCING

In any outsourcing arrangement, the client com-
pany (principal) is usually motivated to shift its
IS operations to external vendors who can carry
out the work at the lowest possible cost. The
vendor, on the other hand, may be looking for
high profit in the arrangement. There is thus an
economic goal conflict. To protect its interests,
the client will increase its monitoring of the
vendor. This can be achieved by requesting
regular operational performance measures from
the vendor, frequent meetings with the vendor
to review progress of outstanding projects, and
independent auditors to review benchmarks and



4 agile development

END-UseR COMPUTING

Agency theory can help explain the dynamics of
end-user computing. End users develop infor-
mation systems themselves with little IS in-
volvement. End-user computing, interpreted in
agency theoretic terms, is a mechanism for redu-
cing agency problems by eliminating the agency
relationship between the user and IS profes-
sional.

agile development
Mamnjari Mehta and Dennis A. Adams

Agile development (AD) combines accepted
principles of programming and management
into a new discipline for software development
tor rapidly changing environments. This devel-
opment approach contains several different
methodologies, one of which is the most popular
“extreme programming.” AD is a balance be-
tween highly structured and sometimes bureau-
cratic development processes and those
processes that are very unstructured and ad hoc.
For instance, although AD follows planning
and modeling techniques such as data flow dia-
grams and UNIFIED MODELING LANGUAGE
(UML), it avoids excessive reliance on them
which can hinder the developer from meeting
dynamic customer requirements. AD employs
documentation only to the extent that it helps
developers and customers understand the code.
Instead, it relies heavily on face-to-face infor-
mation sharing.
AD is based on the following tenets:

1 Interaction among individuals is preferred
over strict adherence to formal plans, pro-
cesses, and tools. The most efficient and
effective way to share information is to use
face-to-face communication. As a people-
centric approach, the working environment
must be conducive to the personality and
working styles of those developing the
system.

2 Customer collaboration is preferred over ne-
gotiating contracts. Because an organiza-

be better that managers communicate with
the developers on a daily basis rather than
employ a detailed requirements document.
This insures that customer satisfaction is the
highest priority and incremental changes of
the working software quickly reflect custom-
er’s needs.

3 Working software is successful software. It is
preferable to have working software with less
documentation over non-working software
with comprehensive documentation. The
keyistokeep itas simpleas possible. Working
software must be delivered frequently,
ranging from two weeks to two months.

4 Responding to change is better than following
a plan. Change is welcomed and even em-
braced late in the development process. Be-
cause software is developed and delivered in
quick iterations, agile development enables
the design team to quickly respond to new
customer requests.

Some developers would say that AD flies in
the face of the decades-old traditions of struc-
tured design and waterfall methodologies and
that the frequent changes lead to scope creep,
never-ending projects, budget overruns, and the
like. Extreme programming is an example of an
agile development methodology. The very name
“extreme programming” would seem to indicate
some sort of radical, perhaps careless method of
systems development. Extreme programming,
however, has a set of guiding principles that
must be followed, lending structure to the meth-
odology. These principles are interconnected
and support one another.

1 Paired programming: A pair of programmers
work together on a single workstation. One
developer interacts with the workstation and
the other explores, thinks one step ahead,
and analyzes the current logic. Each reviews
and supports the other and they only work
together on the current task. After it is com-
plete, they disband and circulate among the
other teams. This is done at least once a day.

2 Refactoring: Refactoring (Fowler, 1999) is
the process of rewriting existing code with
the goal of making it easier to understand and
more robust. Refactoring is done to a small



